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The basic strain equations of cyclic loadings are presented in [i], and theorems on 
cyclic loadings of isotropic plastic materials are proved. Masing's principle [2] and the 
equations of Shneiderovich [3] are also used in isotropic plasticity. A phenomenological 
model of an elastic body, polarized and magnetized without hysteresis, taking account of 
gyromagnetic effects and the finite values of the strains, is constructed in [4]. Models 
of a continuous medium with electromagnetic moments which take account of the effects of 
magnetic hysteresis and plastic deformations within the framework of the theory of rela- 
tivity are formulated in [5]. Models of magnetoelastic media which take account of magnetic 
hysteresis and plastic deformations are treated in [6] on the basis of a variational equa- 
tion of the mechanics of continuous media [7]. In the present article we discuss the de- 
velopment of the deformation theory of cyclic loadings for anisotropic ferromagnetic and 
ferroelectric materials. 

i. We consider a solid ferromagnetic or ferroelectric body of arbitrary shape having 
a volume V, and bounded by the surface S. In the undeformed coordinate system x i we intro- 
duce Ui(n) , the components of the n-th displacement vector and cij(n), the components of 
the strain tensor for the n-th loading, the components of the strain tensor for the n-th 
loading. All quantities for the n-th loading are labeled with the index n. 

Henceforth we assume the following: The body is subjected to body forces with a volume 
density Fi(n) and stresses T=,n~ on the surface S. The magnetic and electric fields are de- 
termined from Maxwell's equations and the appropriate boundary conditions for problems of 
magnetostatics or electrostatics [8, 9], taking account of the deformation of the material. 

For definiteness we consider a continuous ferromagnetic medium, since analogous results 
for a continuous ferroelectric medium can be obtained by replacing Hi(n) by El(n) , the com- 
ponents of the magnetization vector li(n) by the components of the polarization vector Pi(n), 
and adding the body forces 0(n) Ei(n). 

The equations of equilibrium, taking account of ponderomotive forces, have the form 

a(Tii(n ) axj -q- Fi (I(n), H(n)) ~, Fi(n) = O, 

I ( aHh(,,) ala(,,)~ I ro t  (I( .)  • tI(n)). F+ (I(.) ,  H(.))  = T Ik(+~) ax---7, -- Hh(.) Ox+ } -- Y ( l . i )  

We take the expression for the total stress tensor in the form [9] 

T~jo o = (r~j(,,) + ou(B~,~) , H(~)) ,  

oij(B(,+), H(,,)) = (l /8~)(Bv,+) Hjr + Bj(,+)H~(,+) --  Bh~,~) Hk(,,) 6~s), (1.2) 

where the Bi(n) are the components of the magnetic induction in Gaussianunits for the n-th 
loading 

B~cn ) = Hf  (n) + 4"~I~(n). (1.3) 
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The boundary conditions for stresses on surfaces with normals having direction cosines n i 

are written in the form [8] 

T~:(~)ni = T~(~) + T~ (Ho(~)), T~ (Ho(~)) -- (Vo/8~) (2Ho~(,oHo~(n) -- H~(~)5~i) n~, ( 1 . 4 )  

where the Hoi(n) are the components of the magnetic field outside the ferromagnet and ~o is 
the magnetic permeability of a nonferromagnetic medium, assumed equal to unity. 

Suppose for each n-th mechanical and magnetic loading these are stresses oij(n), strains 
Seij(n)' magnetic field Hi(n), and a magnetization li(n). We represent the stress deviators 

Sij(n ) for the n-th loading 

as the sum of three terms, and the field Hi(n) as the sum of two terms: 

So(n  ) S(.n.) + S[..n] .~,gn) -(m) /4-(~n) ( 1 . 6 )  = ,~ ,~ ~ - ~  , H i ( n ) : H i  -}-**i , 

where S (n) _ [n] ij is the potential mechanical part~_ of the stress deviator, 5ij ' nonpotential me- 

chanical part of the stress deviator; S(.~;. ~) , magnetostriction part of the stress deviator; 
17 

Hi (In) , magnetic part of the field; and H~ (en), mechanostriction part of the field. 
l 

For the first loading we take the following from the conditions for a potential and 
the three-dimensional linearity of the relations between ~, H ~ e, I: 

(~u(O = k u ~  (e(~), /(~))e~(O J- g~[~u(e(O, I(~))I~<ol~(1) , (i. 7) 

H~(1) = ~hj(e(O , I(~))I7(~) + 2qij~[~(E'(1), I(1))Ij(i)eo~[~(1), 

k ~ , ~  ~ 9 K ~ i ~  ~- const ,  k u a  ~ = ka~ u - -  k j i ~  = kurd=, 

Equations (1.7) take account of the initial anisotropy. We introduce dimensionless con- 
stant tensors and label them with asterisk superscipts: 

. , [  , ] } 5 ~  = $ k~;~ (0, O) -- -/5~jkw~ ~ (0, O) , 

l , (m___[ , I ~ ], . i~=~ q ~  (0,0) -- T ~sq=~ (0, 0) q=~ = q=~o (0, 0), 

(1.8) 

where B is the arbitrary shear modulus. Here we have used the fact that H i and I i have the 
same dimensions. 

�9 (*) and B which result from the symmetrization and anti- We introduce the tensors ~ij~B ij~8 

symmetrization of the dimensionless shear modulus tensor with respect to pairs of indices: 

i [*] isnot equal to zero for crystals of the monoclinic and triclinic systems. The tensor "ij~ 

We introduce the quantities 
e(*n) t (*) e _[*n] . [*~ _ 

e{I*n) 1 u*) I I n I(*n) * [ I~ ~*n) 

which are, respectively, the reduced strain deviator taking account of anisotropy (the de- 
viator if the strains satisfy the restriction e[*] = 0), reduced strain tensor taking ac- 

ii 
count of the asymmetry of the shear modulus tensor with respect to pairs of indices, the 
reduced magnetostriction strain deviator, the reduced magnetization vector, and the reduced 
mechanostriction magnetization vector. 
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It is necessary to introduce increments of the quantities appearing in the material re- 
lations for the n-th and (n -- l)-th loadings: 

$(") = 0 / 3 )  ( - -  1)" (~.~<~,,_~) - -  o~< . ) ) ,  S~7 ) = ( - -  1) '~ (S~7 -~) - -  S~7)), 
_ x'!':]~ ~'"") : I)'" :s,,.-l', .~,(s..,,,.)" I (_1) , ,  . - , -  ( s i j  - 

j~'i I n ) :  ( - -  1)'1 \ i rH:In-1) _ it( in)i+ , ,  ~+,1.)= ( _  l)n (/i]gn.-1) __ H{~l~)), 

7 <+'+) = ( I /K )  ( - -  l )"  I-Q+~i-:, (~,~+.(,_,_> - -  ~r~+,,',), 
-~(*~) ( ( . . . .  ~) (*,,n -~*,0 ( . o t * . - t ] _  ot.*~]~ 

i7 : ( - - ' ] - ) n ' , e i J  - - e i s  ) ,  e~i : ( - - l ) ' ~ , , - ~ i  ~2  ; ,  

~ ( I * n )  /' ( /*n- - l )  �9 7~*n) / r (*n--1)  r (*n)  ~, 
eis - -  ( - -  1)" teis - -  e"/~*'~ =i = ( - -  I)'" t'~: - -  - i  1, 

i r e*n)  , = ( -  ..... ') - s T Y " ) ) ,  

(i.li) 

~(n). where K is the arbitrary bulk modulus. Following [I0] we introduce for the tensors ~ .. 

s[n], ~(In), e(*n), ~[*n], ~(l,n), and +~ ........ ~ (In) ~.(en) ; (*n) - - (~*n) .~J" . . . .  I , . l l , =  v=uuumm n i , n i ' • ana I i tNe di- ij ij ij lj ij 
rection tensors and vectors, denoting them by superscripts i, by the formulas 

~ t'ln) __ ~ ( . )  l [ '~( . )~(n)]  1,'~ 

~(lln) "~(In)/ /~(ln)"~(ln)~l/2 
i.i = oi~ It.Oct,, our:, I , 

e ~ l i n ]  . [ * n l l i ] ~ * n ] ] [ * n l ~ l / 2  

~'(l*r0 __ "~(*n) l[ '~(*n)~(*n)~l /2  

e ( l I * n )  "~ ( I*n ) / ( '~ ( l*n )~ ( f*n )~ t /2  

(1.12) 

-, ?'ix*")--li--~(*n) ~(Is ~(*n)~(*n) I~ ) 112 , 7(1s'n) ~i = 1 ('r , l~,J~z ao~ ] �9 

In [i] it is assumed that the direction stress and strain increment tensors coincide, general- 
izing to the case of variable loadings the idea of the coincidence of the stress and strain 
direction tensors in the theory of small elastic--plastic deformations [i0]. We generalize 
the idea of [I] to the case of variable mechanical and magnetic loadings of anisotropic ma- 
terials i assuming the equality of the direction stress increment tensors ~(in) %[in], 
,~(lln) ~ (l'n) ~ [l'n] - (ll*n) • ' ~ij 
S.. and the direction tensors e.= , e~; , eli , respectively, and thequality 
I] I j  ~ j  J 

of the direction vectors of the increments of the magnetic field Hi(in) , Hi(l~n) and the 
direction vectors of the increments of the magnetization~li(l n) and li(~e*n), respectively. 
Then for the n-th loading the relations between ~ij(n), Hi(n) and ~ij(n)li(n) are determined 

by Eqs. (1.5) and (1.6), but written for increments of the quantities, labeled with a ~, and 
the equations: 

7(-> 3 K ?  * ~ ) + 3 ~ ( * " ) ,  r ( t k - ( ~ ) ,  v i 

~>= 2~(~')-'~*n:> ~C~l_  ~ i  "~ 7~7~'1. 
1 i 

_ .  32(.s..,----- 3 ~ ` :  , H ~ ' : ~ : ,  , - - 1 ( ~ . . )  , , 
1 

(i.13) 

where 
: j , 

"~,,,,:l f' 3 ~..:~l.~E,,d) 1!'-. 
1 : \ ~ - - i J  ~ i j  ] , 

1 = t - ' 3  v i i  e i j )  ' 

: : [ * n ] : [ * n ] ~  11~ 

(i.14) 
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~'(") = (~'(.n':~(.n)'} 1/~. 

~- ( s n )  (~(Sn)~(.sn)'~ 1/2. 
k g Z / ) 

~ ' ( z *~ )  [ 2 ~(I*n)~(I*n)h i/2 
i = ["ff" eij eiJ ); 

7(*n) (7(*n)7(*n)~1/~. 

}-(:.) /T(~*,,)7(~*,.>~/~ 

We obtained the bulk properties in (1.13) by assuming the validity of the relation of bulk 
quantities for the base load, but written in terms of increments. Equations (1.13) are 
supplemented by the assumption of the existence of six universal relations among invariants, 
which can he written as a consequence of the hypothesis of the potential character of the 
material equations in increments in the form 

~(~) = 3v~('n)i ,v,~"(n), ~ i  "1 = 3e[*n']l~ , ,  I~ = const ,  

i - -  3 ~ i  ~ /  ' = 

2~/[ (n) = ~,1 \ i j  ~ i j ( n ) ,  l i  ~ i ( n ) ,  

~(n) Z(n) [U(*n)7 "~(*n)7 ~(e*n)u 
= ~l \ ~ij c'ij(nb l i  l i(n),  1 i  ~i(n)), 

(1.15) 

, ) ~(*n) 
In Eqs. (1.15) and the second of (1.13) ~(n) ~(n) and ~(n) are functions of eij , eij(n), 

~*n) ii(n), ~g*n), Ii(n). Here strain anisotropy is not taken into account, and the 
existence of stress increment and magnetization potentials depending on n is assumed. The 
functions ~(n), ~(n) and %(n) for the n-th loading are found from very simple experiments. 
The corresponding problems are solved by the method of successive approximations, analogous 
to the method in [i0, I] for the base and variable loads of isotropic bodies in the absence 
of an electromagnetic field. Not taking account of the change in the linearly elastic con- 
stants with the number of the loading for the theory of plasticity of anisotropic ferromag- 
nets in the presence of a magnetic field, it is possible to use the analog of the generalized 
Rayleigh--Masing--Moskvitin principle [ll, 12, 2, i] 

I i l i ( n ) / . [ ~ n ,  

= [~(*n)~ 1_2 "7(*n)"f 1~2 "~(n) 1] %vii ~ij(n)/'..','n, ~i(n) i(n)/pn, 

2( •*n ) •  I ~2 
i l i(n)l(~nF'n),  

i l i ( n ) l U ~ n l J n ] ,  

(1.16) 

where M ( ) , q, and n are functions corresponding to the base load, ~n is the parameter of 
the n-th mechanical loading) having the meaning of the coefficient of change of scale of 
the stress and strain axes and also of the axes of the increments of stresses and strains 
for the n-th loading (the parameters a n are on the order of magnitude of 2), 8 n is the param- 
eter of the n-th magnetic loading, having the meaning of the coefficient of change of scale 
of the axes of the fields and magnetization and also of the increments of the fields and 
magnetization for the n-th loading (the parameters 8 n are on the order of magnitude of 2); 
the Yn E 8n~n*/= are parameters characterizing the interaction of the magnetic and mechanical 
loadings. In the formation of material relations for the n-th loading principle (1.16) per- 
mits the expression of the corresponding functions in terms of the functions M(), q, and n 
of the first loading. 

When the values of quantities for the n- l-th loading are known, and a model is fixed 
for the increments of the quantities, Eqs. (i.ii) determine the quantities for the n-th load" 
ing 
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A loading condition is a positive value of the energy dissipation function ~X/6t 

5%/5t > O. ( i .  17) 

For the n-th loading the dissipation of energy X : X (n) is written as the sum 

% = X (~)--  %(n-~) + W ( ~ ) - - W ~  ), (1.18) 

where X (n-l) is the energy dissipated up to the final instant of the (n -- l)-th loading, 

~(n), work for the increments of the quantities; ~(n) nondissipated part of the work for 
e ' 

the increments of the quantities. For ~(~) we assume a model such that for a closed cycle 
the area of the hysteresis loop is equal to the energy dissipated in a cycle. Then 

~ ( - )  _-- jf ~ 3 ~ . . n T U ~ ~ d M + 2 7 ( ~ . - - - -  i [  a i  ~ r  , ~ ) ~(~n) d N  q - ~ ' ~ ( n )  ~i(n), = ~qi5(n)ei}(n)-]--~tti(n) W0, (1.19) 

o,o,o \ 

where 
~(*n) ~ ~(*n)~ ,. L = e~;(~)e~(n); M = ~ ~(n~, N =I~e*n)~(n); ( 1 . 2 0 )  
~(~) 3 

If the value of X (n) given by (1.18) -- (1.20) does not satisfy inequality (i.17) with the 
use of model (i.ii), Eqs. (1;5) and (1.6) in increments, and (1.13) -- (i.15), this implies 
that there is an unloading , and the loading has the number n + i. The model assumed is one 

possible variant. It is applicable when S [n] ~(In) (En) ij ' ~ij , and H i are small in comparison with 

s(n)  (~n) ij and H i , respectively, for simple and nearly simple loadings (see below). To con- 

struct other variants of the model it is necessary to give up the conditions of three-di- 
mensional linearity, the existence of potentials, and the constancy of the orientations of 
the direction tensors and vectors. 

2. For simple loading and strain [i0] the direction stress and strain tensors and the 
direction magnetic field and magnetization vectors for any number of the loading n do not 
depend on the time t. A theorem of simple variable loading holds. Let us consider an in- 
compressible anisotropic material characterized by the equalities 

K = o o ,  ~j~----5*] 0, ~(*~)--- 0, 4glI~(1)]>>]H~(l)[ (l = i,  2 , . .  ., n), 

~O 

I ~ ~J ~ ( j i n ) ]  

n , .  . (k) n b(I) 
[ g ~ ( * k ) ~  ~ar ~ [ ' ~ ( * l ) ~  ~ s d9 Ars 11 /~" eii I~iJ(k)] 11  k 1i i(~)! , 

r ,s  h = l  \ ] l = 1  

a~) = (~, + ~)/2, 32 57 ~ = (~ + 0/2, ~ )  = o, ~(~n) = O, 
h = l  / = 1  

(2.1) 

where the body forces and surface forces, the magnetic field, the magnetization, and the 
strains vary proportionally respectively to the parameters %(I) (t), VH(Z) (t), vI(Z) (t), and 
P(~9 (t), where Z is the number of the loading: 

Fi(t) : F~L(r) (t), T~( 0 = T~L(o (t), Hi(t) ---- H~v~(0 (t), ( 2 . 2 )  
0 0 I~(0 = Iivz(0 (t), e~(~) ---- e~j~(z)(t) (l = 1, 2 . . . . .  n), 

where the quantities with superscript zero do not depend on the time. The loading and strain 
will be simple if 
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~'(5 (t) = vm 0  (t) vr(~)(t) (l = ~, 2 . . . . .  n), ( 2 . 3 )  

] ~Arsa~n)(,li(n-l)--~t~(n)) -I ~I [~t'(h-l)-- ~(h)] 2a~k) fi [%'l(l--l)--%II(1)l 2b~l)' 
~,(n--1) - -  )~(n) - -  (,~ ~_ 1) n 

k : l  l : l  r ,s  

f i  2a(h ) f i  ~ l ~ A  /~(n) (vI (~_ l )  . -~ "'~ 
V H ( n - - 1 )  - -  VH(n)  ~ (~ @ t )  A z-~ - -r ,~  

r ,s  h = l  I : 1  

In Eqs. (2.1) and (2.3) Ars , ar (k), bs (Z), y," 6, A are constants. The stresses ~ij(n) are 
found in the form 

m~(~) = ~)~(~) (t). (2 .4)  

It follows from (1.3) and the fourth of Eqs. (2.1) that 

0 . Bi(n) = Bivz(~) (t).  ( 2 . 5 )  

The substitution of (2.4), (2.5), and (2.2) into (i.i), (1.2), and (1.4) gives the first of 
Eqs. (2.3). Maxwell's equations for magnetostatics and the boundary conditions are satisfied 
also. When (2.2) and (2.4) are satisfied the first two of Eqs. (1.3) and the fourth of 
(1.13) are satisfied, since the incompressibility conditions, the first three of Eqs. (2.1), 
are valid. To confirm this it is necessary to use the first, third, sixth, and eighth of 
Eqs. (l.ll) and the second of (i.i0). Since the potential r in (2.1) does not depend on the 
invariant N (cf. (1.19)), which is equivalent to satisfying the last two of Eqs. (2.1), the 
fifth and seventh of Eqs. (1.13) are trivially satisfied: 

The substitution of Eqs. (2.2) and the expressions for ~i (n) and ~(n) from (2.1) into the 

third and sixth of Eqs. (1.13) and taking account of the second and fifth of Eqs. (i.ii) 
gives the second and third of Eqs. (2.3). Since conditions (2.2) and (2.4) give the con- 
stancy of the direction tensors and the conditions of the consistency theorem, the theorem 
is proved. 

~[n] ~(In) and the fields Hi (en) a We note that for nonzero but small stresses ~ij and _ ij 

loading close to (2.2) will be close to simple~ 

By using (1.16) it is possible to prove a theorem on variable loading. If the problem 
of the variable loading of a ferromagnet is solved by the method of successive approxima- 
tions, at each stage it is necessary to solve the separate problem of magnetostatics for a 
known state of strain found from the preceding approximation, and the mechanical problem for 
known fields and magnetizations. We denote the k-th approximation by a superscript k in 
curly brackets. From equations of the type (i.ii) the stresses ~{k}, the strains g{k} 

lj(n) ij (n)' 
H {k} the magnetic field i(n) are equal to the differences (n even) or sums (n odd) : 

( ~ ) ,  ~ �9 _ ,  ~ ~ }  o ~  l ) ~ ~ ) ,  

i(n) = - r / i i n - -1 )  - -  ( - -  l ]  ~ i ( n ) ~  ~ i ( n )  = i (n--1)  ~ k - -  ] ~(n) 

{k} {k} . { k }  a n d  _{k}  of the corresponding quantities ~ij(n-l)' eli(n-l)' hi(n-l), • existing before the 

beginning of the n-th loading, and certain fictitious quantities which result from solving 
the problem of the base loading under the action of the loads 

[TI, k--I} /{h--l) H(h-~) r_l'(h-- 1 }'I ] (-- i) ~ [F~(n_~) -- F~(n) + F~ ~(n-n,rr~h-~> ~(,~-~)J~-~>~ _ ~.~ ~'(;o(6h-~, .~:~'-~(~)j -- F~ k~(n_~) -- ~(~) , (n-~) -- ~ (~) )J, 

(k--l} ,7, (rr{A--l}~ [n{h--l~ tr(h--1)'%t 
- -  - -  n . # i i  ~ , D ( n = . - ~ ) ,  l i~,llo(n) ) 
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[n{h--1} r~r{k--1}~ [n{h--1} L':--I} n v ( ~ - l }  /_/{h--l}h] 
-'~ nj(~ij ~,o(n) , , , ( n )  ] + nioii  kD(n-~)--B(r~) , " ' 0 , - ~ ) - -  0~) )] 

and the current density 

under the condition that in the material relations of the base load the scales of the axes 
of stresses and strains are changed by a factor an, and the scales of the field and magneti- 
zation by a factor B n. The notations used here appeared in Eqs. (i.i), (1.2), and (1.4). 

3. Let us obtain the material relations for a polycrystalline steel sample. We con- 
sider first the base load. We choose oij and H i as determining parameters. Then the po- 
tential of the strains and magnetizations has the form 

oi 

/ - -  • (H, (~i) H-%:'2 - -  a o (H, o i) H~H~c~ii q- (r2/2K + i" eid(ri, 
0 

(3.1) 

where o i and  e i are the intensities of the stresses and strains; • and ao are functions of 
H and ~ which must be determined experimentally. Equation (3.1) yields the following ex- 
pressions for the strains and magnetizations: 

t' e 0% "] of i 3 i ~• H e _ o-67 H~ S i j  - -  aoH~H~, / 
! 

I~ - -  Of __ _1_ i 0% H ~, H~ --2ao(~ieH(z. 
OH i _ _  xr 7 $---H $H 

( 3 . 2 )  

For the simple elongation of a long rod in the direction of the axis the second of Eqs. 
(3.2) can be rewritten in the form 

H ~ ?ix o (H, ~i) 0% (H, ~i) ( 3 . 3 )  
I - -  xo (H ,  u i) H 2 OH 2a o (H, (~i) (~i I t  - -  t t :(~i  OH ' 

I --  1!, H = Hi, (~ i - -  (~n, 

where o~1 is the stress applied to the ends of the rod, and H i and I i are directed along 
the axis of the rod. 

We approximate the experimental magnetization curves for a patented steel wire [13], 
choosing as an analytic relation the function given in [14] ; 

no(H ' (~i) H ~ (H=,2)O• - -  oqarctg[exp(•  ( 3 . 4 )  

2co(H, o i ) H  -~- H2Oao/OH - -  a2arctg [exp(• i)~H], 

where a,, a2, x, and B are experimental constants. 

After integrating Eqs. (3.4), analytic expressions are obtained for the functions 

4o (H, oi) and ao (H, ~ 

2a ce I In [exp (-- 2zo i) -~- ]32H2] 
xo (H, oi) = : ~  arctg [exp (• ~H] - -  ~H 2 exp (• ' 

(Y'O a o (H, ~i) ---- ~ arctg [exp (• ~H] - -  =2 In [exp (-- 2• ~- ~2H=] 
213H 2 exp (• 

(3.5) 

Taking account of (3.4)~ Eq. (3.3) can be written in the form 
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I = (ul - -  o%ei)arctg[exp(• ( 3 . 6 )  

The approximation of the experimental data in [14, 13] by Eq. (3.6) is quite satisfactory. 

The constants ~, and B, are determined by comparing the experimental curves with Eq. 
(3.6) for ~ = 0 [14]. After determining al and 8, the constants K and a2 are found for 
fixed ~ from the conditions 

X = (I/oi)|n(I/~Ha), =I -- =~ei = (2/~)1.(Oi), 

where I,(oi) is the saturation magnetization, and e i in parentheses indicates that the 
constants are calculated from the graph of I as a function of H for a given oi; H e is taken 
from the I--H curve at a value of the magnetization equal to (I/2)I, (oi). The values of the 
constants for the patented steel wire [13] introduced into the model (3.2),.(3.5) were de- 
termined from the experimental I--H curves for e i = 0 and oi = 9.7"i0" dyne/cm2: 

~1 = 950 G , ~ = 7 .8 - t0 -2 (1 /Oe)~  = 6.5.10 -s G.cmZ/dyne, 

• = 1,i7.10..11 cm2/dyne. ( 3 . 7 )  

Equations (3.2) written for increments are valid for variable loadings. When the material 
relations for an isotropiclbody are written in this way principles analogous to (1.16) are 
valid in which for simplicity it is possible to take parameters of the change of scale equal 
to 2: 

u~") = • (-~(~)/2, ~(~)/2), ( 3 . 8 )  

~ )  = (1/2) a o (H( ' ) /2 ,  ~(~)/2), ~!~) = 2 q  ( ~ ) , / 2 ) .  

The functions no and ao for steel are determined by Eqs. (3.5) and (3.7). At the given 
point small fields are considered which do not affect the form of the function Ei(oi). 
Therefore, function ei(oi) , which is known from experiment in the absence of a magnetic field, 
enters (3.8). 
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STRESS STATE OF A STRAIGHT ISOLATED CUT, LOADED FROM wITHOUT 

BY CONCENTRATED FORCES AND GROWING AT A CONSTANT RATE 

E. N. Sher UDC 539.375 

In [i] an investigation was made of the stress state of a straight isolated cut, de- 
veloping at a constant rate under the conditions of antiplane deformation of the ideal theory 
of elasticity. Here, we consider cases of total self-similar loading and non-self-similar 
loading by concentrated forces, applied at the middle of the cut to its edges and depending 
arbitrarily on the time. 

In the present work an analogous investigation is made within the framework of the 
ideal theory of elasticity for the case of plane deformation; here, use was made of results 
and ideas published in [2, 3]. 

In the unloaded elastic xy plane, at the initial moment of time t = O, let a cut loaded 
by forces concentrated along its edges start to develop along the x axis from the origin of 
coordinates with the rate v. It is required to determine the stress state arising in the 
plane, specifically, the value of the coefficient of the field intensity of the stresses 
near the tip of the cut. The elastic displacements, as is well known [4], satisfy the fol- 
lowing equations: 

I 02ui I 02vi 

w i - - u i - ] -  v i, Au i ==~"~ Or2 ' ~v i b 2 0 t  2 ' 

Ou 1 Oug Ov 1 Ove 

Oy Ox' Ox Oy ' 

(O.l) 

where ui(x , y, t), vi(x, y, t) are the potential and solenoidal components of the displace- 
ment vector w i (x, y, t); a and b are the velocities of the longidinal and transverse waves 
of the elastic plane. 

The components of the stress tensors are expressed in terms of the displacements by 
the formulas 

(0.2) 

We consider the region of the upper half plane y > 0, bounded by the arc of the longi- 
tudinal wave, emitted at the initial moment of time (Fig. I). In this region a solution of 
system (0.i) is sought, satisfying the following boundary conditions. At the edge of the 
cut, with Ixl < vt, the external load is given: Oyy =-Oy (x, t); axy = 0. The form of 
the function Oy (x, t) will be refined in what follows. 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 
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